Пелля уравнение - définition. Qu'est-ce que Пелля уравнение
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Пелля уравнение - définition

Пелля уравнение

Пелля уравнение         

уравнение вида x2 - Dy2 = 1 (D - целое положительное число), у которого разыскиваются решения в целых числах. Если D не является полным квадратом, то уравнение имеет бесконечное количество решений. Решение x0 = 1, y0 = 0 очевидно. Следующее по величине решение (x1, y1) П. у. можно найти, пользуясь разложением в непрерывную дробь (См. Непрерывная дробь) числа . Зная решение (x1, y1), всю совокупность решений (xn, yn) П. у. получают из формулы:

(x1 + y1) n = xn + yn ,

n = 0, 1, 2,...

Изучение П. у. тесно связано с теорией алгебраических чисел (См. Алгебраическое число). П. у. названо по имени английского математика Дж. Пелля (J. Pell; 17 в.), которому Л. Эйлер по ошибке приписал один из способов решения этого уравнения. См. также Диофантовы уравнения.

Лит.: Венков Б. А., Элементарная теория чисел, М.- Л., 1937, гл. 2; Dickson L. E., History of the theory of numbers, v. 2, N. Y., 1966.

Уравнение непрерывности         
  • Фрагмент мемуара Д’Аламбера [http://gidropraktikum.narod.ru/equations-of-hydrodynamics.htm#continuity-equation «Essai d’une nouvelle théorie de la résistance des fluides»] (1752, относится к 1749), содержащий уравнение неразрывности для стационарного осесимметрического течения сжимаемой жидкости (<math>\delta</math> — плотность, <math>p</math>, <math>q</math> — компоненты скорости в цилиндрической системе координат)
ЛОКАЛЬНАЯ ФОРМА ЗАКОНОВ СОХРАНЕНИЯ
Уравнение неразрывности; Неразрывности уравнение; Уравнение несжимаемости; Уравнение неразрывности течения
Уравне́ния непреры́вности — (сильная) локальная форма законов сохранения. Ниже приведены примеры уравнений непрерывности, которые выражают одинаковую идею непрерывного изменения некоторой величины.
Неразрывности уравнение         
  • Фрагмент мемуара Д’Аламбера [http://gidropraktikum.narod.ru/equations-of-hydrodynamics.htm#continuity-equation «Essai d’une nouvelle théorie de la résistance des fluides»] (1752, относится к 1749), содержащий уравнение неразрывности для стационарного осесимметрического течения сжимаемой жидкости (<math>\delta</math> — плотность, <math>p</math>, <math>q</math> — компоненты скорости в цилиндрической системе координат)
ЛОКАЛЬНАЯ ФОРМА ЗАКОНОВ СОХРАНЕНИЯ
Уравнение неразрывности; Неразрывности уравнение; Уравнение несжимаемости; Уравнение неразрывности течения

в гидродинамике, одно из уравнений гидродинамики, выражающее закон сохранения массы для любого объёма движущейся жидкости (газа). В переменных Эйлера (см. Эйлера уравнения гидромеханики) Н. у. имеет вид:

где ρ - плотность жидкости, v - её скорость в данной точке, a vx, vy, vz - проекции скорости на координатные оси. Если жидкость несжимаема (ρ = const), Н. у. принимает вид:

Для установившегося одномерного течения в трубе, канале и т.п. с площадью поперечного сечения S Н. у. даёт закон постоянства расхода ρSv = const.

С. М. Тарг.

Wikipédia

Уравнение Пелля

В математике уравнение Пелля — диофантово уравнение вида

x 2 n y 2 = 1 , {\displaystyle x^{2}-ny^{2}=1,}

где n {\displaystyle n}  — натуральное число, не являющееся квадратом.